\(\int \frac {x^2 (a+b \text {arccosh}(c x))}{\sqrt {d-c^2 d x^2}} \, dx\) [107]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [F]
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 27, antiderivative size = 132 \[ \int \frac {x^2 (a+b \text {arccosh}(c x))}{\sqrt {d-c^2 d x^2}} \, dx=-\frac {b x^2 \sqrt {-1+c x} \sqrt {1+c x}}{4 c \sqrt {d-c^2 d x^2}}-\frac {x \sqrt {d-c^2 d x^2} (a+b \text {arccosh}(c x))}{2 c^2 d}+\frac {\sqrt {-1+c x} \sqrt {1+c x} (a+b \text {arccosh}(c x))^2}{4 b c^3 \sqrt {d-c^2 d x^2}} \]

[Out]

-1/4*b*x^2*(c*x-1)^(1/2)*(c*x+1)^(1/2)/c/(-c^2*d*x^2+d)^(1/2)+1/4*(a+b*arccosh(c*x))^2*(c*x-1)^(1/2)*(c*x+1)^(
1/2)/b/c^3/(-c^2*d*x^2+d)^(1/2)-1/2*x*(a+b*arccosh(c*x))*(-c^2*d*x^2+d)^(1/2)/c^2/d

Rubi [A] (verified)

Time = 0.10 (sec) , antiderivative size = 132, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.111, Rules used = {5938, 5892, 30} \[ \int \frac {x^2 (a+b \text {arccosh}(c x))}{\sqrt {d-c^2 d x^2}} \, dx=-\frac {x \sqrt {d-c^2 d x^2} (a+b \text {arccosh}(c x))}{2 c^2 d}+\frac {\sqrt {c x-1} \sqrt {c x+1} (a+b \text {arccosh}(c x))^2}{4 b c^3 \sqrt {d-c^2 d x^2}}-\frac {b x^2 \sqrt {c x-1} \sqrt {c x+1}}{4 c \sqrt {d-c^2 d x^2}} \]

[In]

Int[(x^2*(a + b*ArcCosh[c*x]))/Sqrt[d - c^2*d*x^2],x]

[Out]

-1/4*(b*x^2*Sqrt[-1 + c*x]*Sqrt[1 + c*x])/(c*Sqrt[d - c^2*d*x^2]) - (x*Sqrt[d - c^2*d*x^2]*(a + b*ArcCosh[c*x]
))/(2*c^2*d) + (Sqrt[-1 + c*x]*Sqrt[1 + c*x]*(a + b*ArcCosh[c*x])^2)/(4*b*c^3*Sqrt[d - c^2*d*x^2])

Rule 30

Int[(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)/(m + 1), x] /; FreeQ[m, x] && NeQ[m, -1]

Rule 5892

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[(1/(b*c*(n + 1)))*S
imp[Sqrt[1 + c*x]*(Sqrt[-1 + c*x]/Sqrt[d + e*x^2])]*(a + b*ArcCosh[c*x])^(n + 1), x] /; FreeQ[{a, b, c, d, e,
n}, x] && EqQ[c^2*d + e, 0] && NeQ[n, -1]

Rule 5938

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :> Simp[
f*(f*x)^(m - 1)*(d + e*x^2)^(p + 1)*((a + b*ArcCosh[c*x])^n/(e*(m + 2*p + 1))), x] + (Dist[f^2*((m - 1)/(c^2*(
m + 2*p + 1))), Int[(f*x)^(m - 2)*(d + e*x^2)^p*(a + b*ArcCosh[c*x])^n, x], x] - Dist[b*f*(n/(c*(m + 2*p + 1))
)*Simp[(d + e*x^2)^p/((1 + c*x)^p*(-1 + c*x)^p)], Int[(f*x)^(m - 1)*(1 + c*x)^(p + 1/2)*(-1 + c*x)^(p + 1/2)*(
a + b*ArcCosh[c*x])^(n - 1), x], x]) /; FreeQ[{a, b, c, d, e, f, p}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0] && I
GtQ[m, 1] && NeQ[m + 2*p + 1, 0]

Rubi steps \begin{align*} \text {integral}& = -\frac {x \sqrt {d-c^2 d x^2} (a+b \text {arccosh}(c x))}{2 c^2 d}+\frac {\int \frac {a+b \text {arccosh}(c x)}{\sqrt {d-c^2 d x^2}} \, dx}{2 c^2}-\frac {\left (b \sqrt {-1+c x} \sqrt {1+c x}\right ) \int x \, dx}{2 c \sqrt {d-c^2 d x^2}} \\ & = -\frac {b x^2 \sqrt {-1+c x} \sqrt {1+c x}}{4 c \sqrt {d-c^2 d x^2}}-\frac {x \sqrt {d-c^2 d x^2} (a+b \text {arccosh}(c x))}{2 c^2 d}+\frac {\sqrt {-1+c x} \sqrt {1+c x} (a+b \text {arccosh}(c x))^2}{4 b c^3 \sqrt {d-c^2 d x^2}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.64 (sec) , antiderivative size = 141, normalized size of antiderivative = 1.07 \[ \int \frac {x^2 (a+b \text {arccosh}(c x))}{\sqrt {d-c^2 d x^2}} \, dx=\frac {-\frac {4 a c x \sqrt {d-c^2 d x^2}}{d}-\frac {4 a \arctan \left (\frac {c x \sqrt {d-c^2 d x^2}}{\sqrt {d} \left (-1+c^2 x^2\right )}\right )}{\sqrt {d}}+\frac {b \sqrt {\frac {-1+c x}{1+c x}} (1+c x) (-\cosh (2 \text {arccosh}(c x))+2 \text {arccosh}(c x) (\text {arccosh}(c x)+\sinh (2 \text {arccosh}(c x))))}{\sqrt {d-c^2 d x^2}}}{8 c^3} \]

[In]

Integrate[(x^2*(a + b*ArcCosh[c*x]))/Sqrt[d - c^2*d*x^2],x]

[Out]

((-4*a*c*x*Sqrt[d - c^2*d*x^2])/d - (4*a*ArcTan[(c*x*Sqrt[d - c^2*d*x^2])/(Sqrt[d]*(-1 + c^2*x^2))])/Sqrt[d] +
 (b*Sqrt[(-1 + c*x)/(1 + c*x)]*(1 + c*x)*(-Cosh[2*ArcCosh[c*x]] + 2*ArcCosh[c*x]*(ArcCosh[c*x] + Sinh[2*ArcCos
h[c*x]])))/Sqrt[d - c^2*d*x^2])/(8*c^3)

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(299\) vs. \(2(112)=224\).

Time = 0.87 (sec) , antiderivative size = 300, normalized size of antiderivative = 2.27

method result size
default \(-\frac {a x \sqrt {-c^{2} d \,x^{2}+d}}{2 c^{2} d}+\frac {a \arctan \left (\frac {\sqrt {c^{2} d}\, x}{\sqrt {-c^{2} d \,x^{2}+d}}\right )}{2 c^{2} \sqrt {c^{2} d}}+b \left (-\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \sqrt {c x -1}\, \sqrt {c x +1}\, \operatorname {arccosh}\left (c x \right )^{2}}{4 d \,c^{3} \left (c^{2} x^{2}-1\right )}-\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (2 c^{3} x^{3}-2 c x +2 \sqrt {c x -1}\, \sqrt {c x +1}\, c^{2} x^{2}-\sqrt {c x -1}\, \sqrt {c x +1}\right ) \left (-1+2 \,\operatorname {arccosh}\left (c x \right )\right )}{16 d \,c^{3} \left (c^{2} x^{2}-1\right )}-\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (-2 \sqrt {c x -1}\, \sqrt {c x +1}\, c^{2} x^{2}+2 c^{3} x^{3}+\sqrt {c x -1}\, \sqrt {c x +1}-2 c x \right ) \left (1+2 \,\operatorname {arccosh}\left (c x \right )\right )}{16 d \,c^{3} \left (c^{2} x^{2}-1\right )}\right )\) \(300\)
parts \(-\frac {a x \sqrt {-c^{2} d \,x^{2}+d}}{2 c^{2} d}+\frac {a \arctan \left (\frac {\sqrt {c^{2} d}\, x}{\sqrt {-c^{2} d \,x^{2}+d}}\right )}{2 c^{2} \sqrt {c^{2} d}}+b \left (-\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \sqrt {c x -1}\, \sqrt {c x +1}\, \operatorname {arccosh}\left (c x \right )^{2}}{4 d \,c^{3} \left (c^{2} x^{2}-1\right )}-\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (2 c^{3} x^{3}-2 c x +2 \sqrt {c x -1}\, \sqrt {c x +1}\, c^{2} x^{2}-\sqrt {c x -1}\, \sqrt {c x +1}\right ) \left (-1+2 \,\operatorname {arccosh}\left (c x \right )\right )}{16 d \,c^{3} \left (c^{2} x^{2}-1\right )}-\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (-2 \sqrt {c x -1}\, \sqrt {c x +1}\, c^{2} x^{2}+2 c^{3} x^{3}+\sqrt {c x -1}\, \sqrt {c x +1}-2 c x \right ) \left (1+2 \,\operatorname {arccosh}\left (c x \right )\right )}{16 d \,c^{3} \left (c^{2} x^{2}-1\right )}\right )\) \(300\)

[In]

int(x^2*(a+b*arccosh(c*x))/(-c^2*d*x^2+d)^(1/2),x,method=_RETURNVERBOSE)

[Out]

-1/2*a*x/c^2/d*(-c^2*d*x^2+d)^(1/2)+1/2*a/c^2/(c^2*d)^(1/2)*arctan((c^2*d)^(1/2)*x/(-c^2*d*x^2+d)^(1/2))+b*(-1
/4*(-d*(c^2*x^2-1))^(1/2)*(c*x-1)^(1/2)*(c*x+1)^(1/2)/d/c^3/(c^2*x^2-1)*arccosh(c*x)^2-1/16*(-d*(c^2*x^2-1))^(
1/2)*(2*c^3*x^3-2*c*x+2*(c*x-1)^(1/2)*(c*x+1)^(1/2)*c^2*x^2-(c*x-1)^(1/2)*(c*x+1)^(1/2))*(-1+2*arccosh(c*x))/d
/c^3/(c^2*x^2-1)-1/16*(-d*(c^2*x^2-1))^(1/2)*(-2*(c*x-1)^(1/2)*(c*x+1)^(1/2)*c^2*x^2+2*c^3*x^3+(c*x-1)^(1/2)*(
c*x+1)^(1/2)-2*c*x)*(1+2*arccosh(c*x))/d/c^3/(c^2*x^2-1))

Fricas [F]

\[ \int \frac {x^2 (a+b \text {arccosh}(c x))}{\sqrt {d-c^2 d x^2}} \, dx=\int { \frac {{\left (b \operatorname {arcosh}\left (c x\right ) + a\right )} x^{2}}{\sqrt {-c^{2} d x^{2} + d}} \,d x } \]

[In]

integrate(x^2*(a+b*arccosh(c*x))/(-c^2*d*x^2+d)^(1/2),x, algorithm="fricas")

[Out]

integral(-sqrt(-c^2*d*x^2 + d)*(b*x^2*arccosh(c*x) + a*x^2)/(c^2*d*x^2 - d), x)

Sympy [F]

\[ \int \frac {x^2 (a+b \text {arccosh}(c x))}{\sqrt {d-c^2 d x^2}} \, dx=\int \frac {x^{2} \left (a + b \operatorname {acosh}{\left (c x \right )}\right )}{\sqrt {- d \left (c x - 1\right ) \left (c x + 1\right )}}\, dx \]

[In]

integrate(x**2*(a+b*acosh(c*x))/(-c**2*d*x**2+d)**(1/2),x)

[Out]

Integral(x**2*(a + b*acosh(c*x))/sqrt(-d*(c*x - 1)*(c*x + 1)), x)

Maxima [F]

\[ \int \frac {x^2 (a+b \text {arccosh}(c x))}{\sqrt {d-c^2 d x^2}} \, dx=\int { \frac {{\left (b \operatorname {arcosh}\left (c x\right ) + a\right )} x^{2}}{\sqrt {-c^{2} d x^{2} + d}} \,d x } \]

[In]

integrate(x^2*(a+b*arccosh(c*x))/(-c^2*d*x^2+d)^(1/2),x, algorithm="maxima")

[Out]

-1/2*a*(sqrt(-c^2*d*x^2 + d)*x/(c^2*d) - arcsin(c*x)/(c^3*sqrt(d))) + b*integrate(x^2*log(c*x + sqrt(c*x + 1)*
sqrt(c*x - 1))/sqrt(-c^2*d*x^2 + d), x)

Giac [F]

\[ \int \frac {x^2 (a+b \text {arccosh}(c x))}{\sqrt {d-c^2 d x^2}} \, dx=\int { \frac {{\left (b \operatorname {arcosh}\left (c x\right ) + a\right )} x^{2}}{\sqrt {-c^{2} d x^{2} + d}} \,d x } \]

[In]

integrate(x^2*(a+b*arccosh(c*x))/(-c^2*d*x^2+d)^(1/2),x, algorithm="giac")

[Out]

integrate((b*arccosh(c*x) + a)*x^2/sqrt(-c^2*d*x^2 + d), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {x^2 (a+b \text {arccosh}(c x))}{\sqrt {d-c^2 d x^2}} \, dx=\int \frac {x^2\,\left (a+b\,\mathrm {acosh}\left (c\,x\right )\right )}{\sqrt {d-c^2\,d\,x^2}} \,d x \]

[In]

int((x^2*(a + b*acosh(c*x)))/(d - c^2*d*x^2)^(1/2),x)

[Out]

int((x^2*(a + b*acosh(c*x)))/(d - c^2*d*x^2)^(1/2), x)